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ABSTRACT

This article, by obtaining the limit of probability that some equa-

tion arising in a case of M-estirnate possesses at least one solution,

establishes the fact that even in the simplest case, when the function p

is not differentiable at least at one point, it is not legitimate to con-

vert the minimization problem

n
P(Yi- i!): = min

i=l 1-1

defining the M-estimate to the solution of equations i=l &(Yi_ ,,, 0.
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I. INTRODUCTION

Consider a standard linear form

Yi = x'O + ei, = 1,... ,n .... (1.1)

where {xi} is a sequence of known p-vectors, p > 1, {ei} is a sequence of

random errors. The M-estimate (Huber (1964, 1973)) of is deflne1
n 0

as a solution of the minimization problem

P(Yi-xs): = min (1.2)i=l 1 ,

p is a chosen function on R1  When p is convex and p' exists everywhere

1S
on R1 , (1.1) can be rewritten as the problem of solving the system of

equations:

i p'(Yi - xi-)xi = 0. (1.3)

Some authors obtain asymptotic properties of M-estimates via this approach.

See Yohai and Maronna (1979), Maronna and Yohai (1981), Huber (1973), among

others.

When p is not convex, but p' exists everywhere, the solution of (1.2) ,. -..
S

must still be a solution of (1.3). Therefore, if it can be shown that some

asymptotic property is possessed by all solutions of (1.3), then this

property is also possessed by the solution of (1.2). Only in such circum- For- --

stances one has the right to assert that the problem (1.2) can be converted

to (1.3).

However, in many cases of practical significance, p is not differen- "Of

tiable somewhere. A famous example is p(u) = Jul, leading to the much-

studied Minimum L -Norm estimate. In such cases one may still write down ,6.C,
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the equation (1.3) fornally, ignoring for the moment the fact that p'(u)
I

is not defined for some u. To justify such an approach, one has to make

sure the following two points:

1) That the probability of the event {(1.3) has a solution} tends

to one as n -.

2) That the probability of the event {The solution mentioned in 1)

is a solution of (1.2)} tends to one as n - .

Since it is difficult to study the M-estimate directly resorting to

the minimization (1.2), it makes good sense to give a closer look into the

problem: Whether or not it is possible to validate this approach in a

reasonably general framework? The present article solves this problem

in the negative.

This work is stimulated by a paper of Dodge and Jureckova (1987), who
2

studied the M-estimate defined by the function p(u) = 6lul + (1- 6)u

(0 < 6 < 1). This function is not differentiable at u = 0, unless 6 = 0.

But they used (1.3) to replace the minimization problem (1.2) without

clarifying the two points mentioned above. We shall show that even in

the simplest special case of estimating a location parameter, their

approach is invalid, to say nothing about the general case. Our result

shows that to obtain rigorous results of M-estimate when p is not every-

where differentiable, one must pay due attention to the original minimi- !
zation problem (1.2). See, for example, Chen and Wu (1987).

S.
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2. FORMULATION OF THE THEOREM

Consider a special case of (1.1) in which a30 is one-dimensional,

x= = ... 1. The problem becomes one of estimating the location

parameter. Since p(U) 61u1 + (1- fu 2 , on writing a = a, the equation

(1.3) assumes the form

n n
6 1 sgn(Y-a) + 2(1-6) Z (Yi-a) = 0 (2.1)
i=l i=l r

where sgn(O) = 0, sgn(u) = u/jul for u 0 0. Define

En = the event {(2.1) has at least one solution), pn = P(E ) (2.2)

We have the following theorem:

THEOREM. Suppose that Y1 . Y2' "'" are independent and identically

distributed (i.i.d.) random variables with a finite variance and a common

density function f. Denote by c the unique solution of the minimization

problem for 0 < 6 < 1:

Q(a) 6EIY -al + (I -6)E(Y l -a)2 : = min. (2.3)

Suppose that f is continuous and positive at c. Then

lim pn (l- 6)/(l - 6+6f(c)) (2.4)
n----

which is less than one for 6 e (0,1), and can be arbitrarily small when

f(c) is large, or 6 is close to 1.

. L,,,I.

:w'. " -.,, .,.,.,:" .' ," -','-,. ",,' " , ', ',,",w .." 'r.,".'r- .....,..- .-.r ...p .-. '.. .- --- '.. ,?-.' .'.o" " . ...-- -'.. " '.• -"-' .'....
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3. A CRUDE RESULT

We shall give the proof of the Theorem in Section 4. Since the

proof is quite devious, for readers who are not interested in the specific

value of lim pn' we offer in this section a simple and elementary proof

of a less-accurate result, from which, nevertheless, follows the invalidity

of the approach of Dodge and Jureckova (1987): Suppose that YI' Y2 '

... are i.i.d. variables with a common rectangular distribution R(0,1)

and 6 = 2/3, then we have

lim inf(l-pn) > 0. (3.1)
n-- n

For a proof, denote by nl < n2 < nn the order statistics of

Y'' ""' Yn' and hitherto we shall abbreviate Eni to Ci" Write

E[n1/2 + An- ] n

Wn l[n/2 + An], nn = I Y
i=l i=[n/2 +n]+l I

where [b] denotes the integer part of b. Remembering s = 2/3, rewrite

(2.1) as

n n
sgn( i-a) + I (Ei-a) = 0. (3.2)

i=l i=I

Write Lnl and Ln2 for the intervals [1/2-2/i-, 1/2] and [1/2, 1/2+2/.iT]

respectively, and define the events

A1  Aln = { [n/2-/n] e Lnl,

A2 - A2n = { [n/2+vn] e Ln2}'

B = B n  = {W n 6 [ [n/2 +/n-]/2 - I/Vn, [n/2 + /-I] 2 + I/€f]} .

Note that when A2 fl B occurs, Wn e L 3 - [1/4- 1/fn, 1/4+2/1An].

Denoting by o the distribution function of N(0,1) and noticing the fact
IV.



that the conditional distribution of [n/2+v'n]W n given [n/2+ A] is the '

same as plus the sum of [n/2+In] - 1 i.i.d. variables with a

common distribution R(O, [n/2+/n])' it is easy to see that

lim inf P(AFlA2 nB) > lim (P(AI) +P(A 2 ) +P(B) -2 )
n-*w 1 n- 2

= 3[D(2)- D(-2)] - 2 q > 0. (3.3)

Now we proceed to show that there exists constant r > 0 such that

when n is sufficiently large

P(EnIL[n/2+n]=Un' [n/2- Vn] = vn ' Wn =wn) > r (3.4)

holds uniformly for un e Ln2 , vn e Lnl and wn e Ln3 . For this purpose

write cn n - [n/2+,n]. Under the above given conditions, the conditional

distribution of nn is the same as the sum of cn i.i.d. variables with a

common distribution R(u ,). Since 1 - u > 1/3, when u e Ln, by elemen-
n5 n n n2'

tary calculus, or omploying local limit theorem (see Petrov (1975)), it

can easily be shown that the conditional density f(t,un) of

Qn -2/3(1-u )lc n - ( u .

tends uniformly to Y/2"- 1' exp(-t2/2) for un e Ln2 and t bounded.

Since [n/2+'ii]Wn + n, + + n' an inspection of the equation

(3.2) reveals that when Wn held fixed, each real a corresponds one and only

one value n (a) such that when n assumes the value n (a), (3.2) will haven n n

solution a. Evidently n (a) increases linearly with a as long as a stays

within ( i i.) for some i, dnd Tn (a) has a jump of magnitude 2 at a E .

As a runs from [n/2-vn] to [n/2+Vn]' a passes at least 2Vn - 3 such

i's. Hence there exist at least 2Ain - 3 intervals, each with length 2,

',,.

a, D,

". " " -, - . . . . . . " . ' , " 'm "w' J#°t , ' * ' % *'-" - . . " , ".. *-.* % V . , , * w" ' ,' ,, ". % ', • e . "
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and any two of them are disjoint, such that if nn falls into one of these

intervals but not equal to the midpoint of this interval, (3.2) has no

solution. Denote by Dn the union of these intervals. It is easy to

see that

Dn - [3n/8-21,/n/4- 3, 3n/8+17,n/4] (3.6)

when un e Ln2 ' vn e Lnl and wn e L n3 In fact, from equation (3.2) it is

seen that when un , vn , wn satisfy these conditions, each point in Dn must

not be less than

n

(na- (n/2 + v)wn - i=l - [n/2 - /] 1 2 - 2/5, w = 1/4 +n

= n(1/2-2//n-) - (n/2+vrn)(I/4+2/1,') - (n-2[n/2-/_]+l)

_ 3n/8 - 21./n/4 - 3.

The other end is similar. From (3.5), (3.6) and the fact that un e Ln2'

it is easy to see that n e Dn entails IQ I <_ 50 + o(l). Denote by JBI

the Lebesgue measure of a set B. We have seen that I DnI > 4/vi - 6. Hence

by (3.5) and un e Ln2 ' we have I{Q nn eDn )I > 38 + o(l). These facts,

and the fact that f(u nt) converges uniformly to V -I exp(_t 2/2), enable

us to infer that when n is sufficiently large,

The left-hand side of (3.4) > - I e 12 r
f 31 < I ti < 50

uniformly for un e Ln2, vn e Lnl, wn e Ln3 ' This proves (3.4). Now (3.3)

and (3.4) together give

1 -p > rq/2 > 0

for n large, and (3.1) is proved.

L2';!"'i--, '" -•
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4. PROOF OF THE THEOREM

The following lemma will be needed in the proof.

LEMMA 1. Suppose that we have a triangular array of random variables

Xni, < i< m, n> 1}, such that limmn = and for each n, Xnl ... X

2
are independent. Suppose that EXni = 0, 0 < ani = var(X ni) < I, 1 < i < mn 5

n > 1. Write

m m

2 n = n Fn(x) = P(X < a X)
In n i I n n n

and assume that the following conditions are satisfied:

a. There exist constants A1 > 0, A2 > 0, such that

2
A <n < , for < i < m, n >.
1-ni- 25 n

b. There exist positive constants cI , c2 ... tending to 0, such that

2
sup sup sup If".(t)+a .

2  < c m >
t tI_/m n>l l<i<mn n

__n

where fni is the characteristic function of X.ni.

c. There exists a positive function g = g(a,b) defined on the set

{(a,b): O< a< b}, such that

sup if ni(t)l < exp(-g(a,b)), for 1 i < M n9 n > 1.

Sa< I<b

Then we have

sup I (FIn (x + h) - F n(x)) (, ((x + h) - D(x)) o o(h + -

xl<

Here o(h+A -I) depends only upon Al, L2, {cm}, and the function g.

Stone (1965) proved this lemma in the special case that

ni i ' . are i.i.d. variables.

His method of proof can be adopted here with some minor modifications, so

*'A

,..

• .-. .- -% . - -=, ' "•"-". .. "%* % -. ,' . '" , '='"". '' ' - - a.'- ". '""' - -,-.-,, '5"%' % % , a-' " " -" - ' "
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the details are omitted.

2

Now turn to the proof of the theorem. Denote by p, m and o the

expectation, median and variance of Y1 respectively. Without loss of

generality, assume that c = 0 (see (2.4)). Since c must lie between

and m, without loss of generality assume that v < 0 < m. Denote by F the

distribution function of YI' and q = F(O), we have 0 < q < 1/2. Since 0

is the minimization point of Q(a), we easily verify that

-X(l -2q) X 2(I- ) (4.1)

Denote, as in Section 3, by CI < " <  the order statistics of YI' ...
1 n

Y Evidently, if (2.1) has a solution an, there must be some j such that
nn

j _ aZn < Ej+l" (4.2)

Since F is a continuous distribution, it is easy to verify that P(a nn =

for some j) = 0, and (4.2) may be replaced by

< a n <  j+l" (4.3)

Considering the equation (2.1), (4.3) is equivalent to

n
< Yn + X(n-2j)/n < j+l' Yn =

. Yi/n. (4.4)
i=l1

Writing pnj = P(Kj <n+X(n-2j)/n<%j+l), j = 0,l,...,n, with the convention

that o = -' n+l = w
' we have

Pn =  PnO +  Pnl + '" +  Pnn" (4.5)

Now fix M > 0, and write j, = Jln = [qn-M /n], j2 = J2n = [qn+M-n]

5'..4 (q = F(O)). We verify easily that: If j > O _ -n i < >M/vn, then' 2--
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(4.4) does not hold for j > j2 " Similarily, if CJ < 0, ly n - i < XMI/n,

(4.4) does not hold for j < jl" Hence

Jl-I  n
l Pnj + j=i+l Pnj < P(yn-PI > M//n) + P(jI >0) + P(Cj2< 0). (4.6)
Ji 12+11

From (4.6), it follows easily that

j -1-J11 n
im lim sup( Pnj + Pnj (4.7)

n,- n j=l j=j2+1 
,

2,

For any integer j e [jl'j 2] and x < y, define

Pnj (x,y) = P(x < Yn +x(n-2j)/n<ylj~ = x, = Y).

Since the conditional distribution of Y given C = C y is the same
n x j+l yisteam

as the distribution of (x+y+ 1 +... +r )/n, where" j-1 + n+ " n-j-1

*I . j-l' nl ,n-j- 1  are independent, I' . are i.i.d. with

a common density I (_,x)(.)f(.)/F(x) with expectation pIx and variance lx'

.n-j-I are i.i.d. with a common density I(y,)(.)f(.)/[l -F(y)]

2with expectation 1 2y and variance a2y, on writingP2 2
R= (i-ul x+ (n i ]y))/Sn S = (j-l)o~ + (n-jIl)a 2Rn i 1jl i= 1  -T' 12y : n ) lx + ( n -2y '

we have

R 4 N(0,1), as n . (4.8). n

Now apply Lemma 1, putting {Xn I Xnmn I' "' j-' '

rn-j- I} , where Zi =i - lx' r) =r i - P2y' Since Y1 possesses a density

function f, f(O) > 0 and f is continuous at x = 0, it can easily be veri-

fied that for j e [jlj 2], IxI < n , jyj < n', all conditions of Lemma 1

are satisfied, and furthermore, the quantities A,, A2, sequence {cm} and

J .,
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function g mentioned in that lemma can be chosen in such a way that they

are independent of j, x, y, as long as j e [j 1 j 2], jxj < n-' and

jyj < n-'. Therefore we obtain

P nj(j, %j+l)= (D(b)-D(aj))(l +o(1)) +o(n-1/2) (4.9)

Here o(I) and o(n 1/2 are uniform for j e [jI j12], and

aj= { j- (j+ j+l)/n- [(j-l)lj +(n-j-l)p 2 j+l 1/n- x(n-2j)/n}nSnI, (4.10)

b a -+ ( -1)nS -n (4.11)

Since f(O) > 0 and f is continuous at 0, it follows easily by an inequality

by Bennett (1962) that for any a e (0,1/2):

P(IKjl o(n ) (4.12)

uniformly for j e [jl'j 2]' as n - . On the other hand, denoting by F.

the distribution function of , we have

P(cj+l - Cj > n 2a j 11 n -0)

(P(IcjI < n) 1 -~ [1- f( )(l +o(1))n-2 /(l - q)]n WdF(x)
j~x I<n-[

Il-2ax I
_ exp{-2 f (0) (1 +o(l))n -  o(n- ) (4.13)

uniformly for j = l,...,n, as n -.

Now we proceed to make estimates on plx' and S2n For this purpose

introduce the following notations:

u I  = E(YiIy l O 
)

1 1 (Y < 0)

U2  = E(Yll(Y >0)).

"No
e~u
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We have

S2 2 +C 2nj - )
Sn = j l + I) n - 2y

= qn(l +o(1)) (q-Iu u2dF(u) - q+ o(1

(-q)n( 0+o(1))((1 - {q)-  u2dF(u) -(1- q) u 2 )( +o(1))
u>O I

= n(EY - q-u#- (1-q)- u 2 (1 + o(1)) ncT(1 +2(1)) (4.14)

where
2= ~2 q- 1 -1 -2

00 = q( q) ((l q)ul q u2) 0.

Choose a e (1/4, 1/2). When lxI < n-" we have

fx -2 +JxF)
vlx = udF(u)/F(x) = U1 +O(n

-2 a) (q+ dF

.irX 2I1
=q- l(uI - q-1lUlf 0 dF+O 4.5

Similarily, when jxj < n-' and ly-xj < n 2 a, we have

12y (1- q)-I (u2 + (1- q)-lu 2 xdF+ O(n- a)). (4.16)

Writing j = [qn] + tj, for j e [j'j 21, and w = [(1 -q)u1 -qu2]/(q(l -q)),

from (4.10), (4.12)-(4.16), after some simplifications we get

aj = a / Vn{(l + f(O)) c+(2x- )tj/n}(l +o(1 (4.17)

Here o(1) - 0 uniformly for j e [jl'J 2] '  For b. we get exactly the same

expression as (4.17) - of course, with a different o(1). From (4.10),

(4.11) and (4.14), we have b. - a. = n(j+ I - j)/Sn = ool(v; - )

\1 +o(1)). Hence, from (4.9), we obtain
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Pni( $Ejj A c 01 ~l- % (Ifn 01 +( (0)) ~+ (2x -wt.i/n)(1l+0( 1)

+ o(n- 1/2), (4.13)

where o(n- 11) is uniform for j e [j1 'j2], and (u) = V-lexp(-u2 /2).

Now we show that

E(&-+ l -  &j 
= a) =(nf(O))'(l+o( 1)) (4.19)

uniformly for j e [jl'j 2] and Ial < n- , as n - . In fact,

+n-2/3 -j

E(j+1 - j =a) (: + - dln J2n

Since lal < n-' and n- j n(l -q)(l +0(1)) uniformly for j e [jlJ21,

we have

-Fx)(- a)jn-j n-j 1W

RI - Fx)) Fa n-i= II-'(1 - q) 1lf(0)(x -a)( 1 +o(1 )),3-

= exp{-nf(O)(x-a)( I+o(I))} (4.21)

uniformly for x e [a, a+n 2 /3] and j i [ If x > a + n-2/3 , the

same argument gives

F(X))/(1 F(a))n-j- s 1- F( - n-j-1
-~ < (l- 1 + n-2 /3 )) /(l -F(a))

1exp(-n3 O)(I+o(I) = o(n- ) (4.22)

uniformly for x > a + n 2 /3 and j e [J1 ' j2]. From (4.20)-(4.22) and notice

the fact that _t7[I- F(x)]dx + (because ElyVI <-), (4.19) follows. From

(4.19) we obtain

a.E 
11

Pnj= EP n j'(Ej,+) = (Of(0)Vn )-Ed( n0((I +wf(0))E +(2 -w)tj/n)l +ol)f)

+ o(n-1 /2). (4.23)

, .!
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Write o var(= q - q q(l -q). Fix x and consider .p

p~f(O)o 1 n ( j - t j / ( n f ( 0)) )  < x)i

= n( {I (Yi< (tj + oalxn)/,nf(O))) F((tj+0 xV )/(nf(O)))J

j nF((t +cOx/n)/(nf(O))))

: P(n{I(Yi<(tj+axVn)/(nf(O))) -F((tj+ol xfn)/(nf(O))) /(Anca)

- x +0()) +o(t l12) (4.24)

Since tj/fn = 0(1) uniformly for j e [jlj 2], the last expression of (4.24)

tends to t(x) uniformly for j e [jJ] as n - . Denote by Z a random *,

variable with distribution . From (4.23), (4.24), and Helly's theorem,

we get

Ip

Pnj ( f (0 ) An)E([a, (1+ f (0)) olf-l (o)Z+ (1 +2 f(O)t)/(f(0)An 0)

+ o(n /2), (4.25)

where o(n-1/2 ) is uniform for j e [Jl J2]  From (4.25) we obtain

J2 [M ] 0 1+(1 ) lf(o) ____0__

lim rm P (0Of.(\ o.(rn+ l+of(0 m) n ")+

M-, n-*- j) M-).- n- i:-On] "-n

"-p

- (a~f(O)> Zf +4l( ) +(1+2Xf (0)) du:(.of(o)) -OD E,£ c0oof(o) 0, )du

.0 (1 +. ,) 1+xf} 2 2
(2rrofo)) ex( -1( 1 z +-u) jdZdu: 2 of( 2x - c of(O) - + of(O) u - dd

- (1 + 2f(0))"1 + (1 -)(1 -6 + 6f(0)) (4.26)

LaIM
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Finally, from (4.7) and (4.26) we get (2.4). The theorem is proved.
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